Kernelization Lower Bounds by Cross-Composition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernelization Lower Bounds By Cross-Composition

We introduce the cross-composition framework for proving kernelization lower bounds. A classical problem L and/or-cross-composes into a parameterized problem Q if it is possible to efficiently construct an instance of Q with polynomially bounded parameter value that expresses the logical and or or of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a re...

متن کامل

Cross-Composition: A New Technique for Kernelization Lower Bounds

We introduce a new technique for proving kernelization lower bounds, called cross-composition. A classical problem L cross-composes into a parameterized problem Q if an instance of Q with polynomially bounded parameter value can express the logical OR of a sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam (STOC 2008) we sh...

متن کامل

Lower bounds on kernelization

Preprocessing (data reduction or kernelization) to reduce instance size is one of the most commonly deployed heuristics in the implementation practice to tackle computationally hard problems. However, a systematic theoretical study of them remained elusive so far. One of the reasons for this is that if an input to an NP -hard problem can be processed in polynomial time to an equivalent one of s...

متن کامل

Kernelization of generic problems: upper and lower bounds

This thesis addresses the kernelization properties of generic problems, defined via syntactical restrictions or by a problem framework. Polynomial kernelization is a formalization of data reduction, aimed at combinatorially hard problems, which allows a rigorous study of this important and fundamental concept. The thesis is organized into two main parts. In the first part we prove that all prob...

متن کامل

Kernelization Lower Bounds for Finding Constant Size Subgraphs

Kernelization is an important tool in parameterized algorithmics. The goal is to reduce the input instance of a parameterized problem in polynomial time to an equivalent instance of the same problem such that the size of the reduced instance only depends on the parameter and not on the size of the original instance. In this paper, we provide a first conceptual study on limits of kernelization f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2014

ISSN: 0895-4801,1095-7146

DOI: 10.1137/120880240